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[1] Although mechanistic reaction networks have been developed to quantify the
biogeochemical evolution of subsurface systems associated with bioremediation, it is
difficult in practice to quantify the onset and distribution of these transitions at the field
scale using commonly collected wellbore datasets. As an alternative approach to the
mechanistic methods, we develop a data-driven, statistical model to identify
biogeochemical transitions using various time-lapse aqueous geochemical data (e.g., Fe(II),
sulfate, sulfide, acetate, and uranium concentrations) and induced polarization (IP) data. We
assume that the biogeochemical transitions can be classified as several dominant states that
correspond to redox transitions and test the method at a uranium-contaminated site. The
relationships between the geophysical observations and geochemical time series vary
depending upon the unknown underlying redox status, which is modeled as a hidden
Markov random field. We estimate unknown parameters by maximizing the joint likelihood
function using the maximization-expectation algorithm. The case study results show that
when considered together aqueous geochemical data and IP imaginary conductivity provide
a key diagnostic signature of biogeochemical stages. The developed method provides useful
information for evaluating the effectiveness of bioremediation, such as the probability of
being in specific redox stages following biostimulation where desirable pathways (e.g.,
uranium removal) are more highly favored. The use of geophysical data in the approach
advances the possibility of using noninvasive methods to monitor critical biogeochemical
system stages and transitions remotely and over field relevant scales (e.g., from square
meters to several hectares).
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1. Introduction

[2] One of main challenges with in situ remediation
approaches is the difficulty in quantifying key states and
transitions that are diagnostic of the efficacy of the treat-
ment using conventional measurement and interpretation
methods. Many efforts have been made to monitor and
understand the changes of the systems at a range of scales
and using various approaches. For example, Nico et al.
[2009] and Armstrong and Ajo-Franklin [2011] developed
high-resolution imaging techniques to visualize small-scale
physical changes due to bioremediation. Wan et al. [2011]

developed column-scale experiments to identify biogeo-
chemical dynamics. Yabusaki et al. [2007], Fang et al.
[2009], and Li et al. [2010] developed reactive transport
models to identify main reactive pathways or networks at
the laboratory and field scales.

[3] Geophysical techniques, particularly induced-
polarization (IP) methods, have been shown to be useful for
monitoring changes in saturated, porous media caused by
biostimulation. Several recent studies have documented the
change in IP signatures associated with remediation treat-
ments, many of which have been associated with biostimula-
tion experiments conducted at the US Department of Energy
(DOE) Rifle Integrated Field Research Challenge (IFRC)
site near Rifle, Colorado (USA). For example, Williams
et al. [2005], Ntarlagiannis et al. [2005], Davis et al. [2006],
Slater et al. [2007], and Wu et al. [2011] used column-scale
laboratory experiments to show how complex resistivity
varies with specific processes induced through bioremedia-
tion treatments. Williams et al. [2009, 2011] and Flores
Orozco et al. [2011] used surface IP data to track subsurface
changes associated with field-scale remediation experiments.
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[4] Biostimulation studies conducted at the aforemen-
tioned Rifle field site have repeatedly shown that two pre-
dominant microbial metabolic pathways accompany
acetate injection into the alluvial aquifer : iron-reduction
followed by sulfate reduction [Anderson et al., 2003; Vrio-
nis et al., 2005; Yabusaki et al., 2007; Fang et al., 2009;
Li et al., 2010; Williams et al., 2011]. Injection of acetate
acting as an organic carbon source and electron donor ini-
tially stimulates fast growing iron-reducing bacteria (e.g.,
members of the Geobacteraceae) commonly found in the
Rifle sediments [Williams et al., 2011]. Iron reduction
involves the reductive dissolution of iron (hydr)oxide min-
erals to ferrous iron Fe(II) ; at the Rifle IFRC, this process
is typically concurrent with the reductive immobilization of
aqueous U(VI) to insoluble U(IV). With sustained acetate
injection, respiration of sulfate by sulfate reducing bacteria
leads to an accumulation of aqueous S(�II) and precipita-
tion of sparingly soluble FeS given abundant Fe(II) pro-
duced during iron reduction.

[5] However, the state transitions from iron-reduction to
sulfate-reduction under field conditions at the site are com-
plicated because the spatial distribution and availability of
ferric iron are unknown a priori and the spatial distribution
of acetate concentrations is affected by physical and geo-
chemical heterogeneity. Williams et al. [2011] and Flores
Orozco et al. [2011] qualitatively divided the field-scale
biogeochemical processes into four stages during bioreme-
diation experiments according to borehole geochemical
measurements and showed that these four stages were con-
sistent with IP responses based on previous laboratory bio-
geophysical experiments. The first stage represents the
period when iron reduction is the dominant form of metab-
olism and the second stage represents the period where
both iron and sulfate reduction are concurrent forms of me-
tabolism. The third stage represents the period when sulfate
reduction is the predominant metabolic pathway in terms of
sulfate consumption where concentrations decrease from
preamendment levels of 10 mM to <1 mM. The fourth
stage represents the period following cessation of acetate
injection and the postinjection recovery of the system with
significantly lower levels of stimulated microbial activity
given exhaustion of acetate. Important for the uranium
immobilization at the Rifle IFRC site, different reactive
networks drive each of the stages, with each having charac-
teristic biological (and abiotic) processes associated with it.
The goal of this study is to develop an effective method to
quantitatively identify those state transitions using time-
lapse surface geophysical and borehole geochemical
measurements.

[6] Hidden Markov or closely related Markov-switching
models are effective approaches for identifying underlying
states in space-time processes by integrating multisource
and multiscale information [Zucchini and MacDonald,
2009]. They have been used for decades in earth and envi-
ronmental sciences to estimate rainfall and runoff by com-
bining large-scale atmospheric information with local-scale
or regional-scale hydrological measurements. For example,
Zucchini and Guttorp [1991] developed a hidden Markov
model to estimate space-time rainfall by assuming the exis-
tence of unobservable climate states. Hughes and Guttorp
[1994] developed a nonhomogeneous hidden Markov
model to estimate multistation rainfall by using unobserved

weather states to relate synoptic atmospheric patterns to re-
gional hydrologic phenomena. Lu and Berliner [1999]
developed a Markov-switching model to estimate daily run-
off series by considering hydrological processes as three
different stages (i.e., rising, falling, and normal phases),
each of which can be modeled differently.

[7] In this study, we develop a hidden Markov model to
quantitatively identify geochemical stages using borehole
geochemical measurements and surface IP data. Both data
sets were collected at multiple time points during an
acetate-amendment experiment at the Rifle IFRC site. We
consider the underlying stages as hidden states, with tem-
poral transitions among those states driven by underlying
reaction networks, the injection of amendments, and the
local biogeochemical environment. We assume that each
stage has a unique suite of geochemical characteristics
defined by the probability distribution of the multivariate
geochemical measurements. We stress that the intent of
this study is not to mechanistically define petrophysical
relationships between IP responses and specific geochemi-
cal transformations as has been developed by many previ-
ous studies using Rifle-based data or samples, but instead
to develop a methodology that jointly uses time-lapse geo-
chemical and geophysical data to identify integrated geo-
chemical stages (such as predominance of a given redox
condition) and their transitions over time. However, we
build upon the petrophysical understanding developed
through the previous studies.

[8] The remainder of this paper is organized as follows.
Section 2 briefly describes the Rifle IFRC site and data
used for the analysis, which provide the basis for develop-
ing the hidden Markov model. Section 3 describes the
development of the hidden Markov model. The estimation
results are given in section 4 and discussion and conclu-
sions are provided in sections 5.

2. Rifle Biostimulation Experiments and Data
Sets

2.1. Rifle IFRC Site and In Situ Bioremediation

[9] Several field-scale bioremediation experiments have
been conducted at the uranium contaminated DOE Rifle
IFRC site near Rifle, Colorado (USA) from 2002 to 2009.
A detailed description of the site and experiments can be
found in Anderson et al. [2003], Vrionis et al. [2005], and
[Williams et al., 2011]. The shallow subsurface consists of
an unconfined, uranium-contaminated alluvial aquifer that
includes sandy-gravely unconsolidated sediments with
variable silt and clay content. Underlying the aquifer is a
relatively impermeable aquitard (i.e., silt and mudstones of
the Eocene Wasatch formation) located at spatially variable
depths of 5.9–7.0 m below ground surface [Williams et al.,
2011; Chen et al., 2012]. During the field experiments, ace-
tate as an electron donor and organic carbon source was
injected into the groundwater through a series of injection
wells, along with the conservative tracer bromide.

[10] This study focuses on the biostimulation field
experiments that were conducted between August 2007 and
December 2009; the timeline of different amendment
injections and details on the acquisition of geophysical
measurements are given in Flores Orozco et al. [2011].
Specifically, we focus on the geochemical and geophysical
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data collected from 19 July 2008 to 8 December 2009.
Figure 1 illustrates the well field used to conduct the biore-
mediation experiments, where the 10 solid circles (i.e.,
G51–G60) are acetate injection boreholes and the 12 open
circles (i.e., D01–D12) are down-gradient monitoring
wells. Acetate was injected into the unconfined aquifer
over the saturated interval of 3.5–6.0 m below ground sur-
face. The three open triangles (i.e., U01–U03) in Figure 1
are up-gradient monitoring wells. Time-lapse surface
induced polarization data were collected along the dashed
line, which is located at 2.7 m down gradient from the
injection wells. Geochemical sampling and geophysical
data collection (both described below in detail) occurred
before, during, and after the period of acetate injection.

2.2. Borehole Aqueous Geochemical Measurements

[11] Under the Rifle field conditions, multiple reactions
(e.g., microbial and geochemical) and multiple processes
(i.e., sorption, desorption, dissolution, etc.) may occur dur-
ing acetate amendment [Li et al, 2010]. It is difficult to iso-
late the reactions and processes and to measure the
microbial and geochemical components separately. Instead,
it is common to infer the reactions based on data available
from groundwater samples.

[12] For this study, we collected groundwater samples
from the depth of 5 m below ground surface from each of
the 12 down-gradient monitoring wells as a function of time
after injection of acetate, with the temporal sampling inter-
vals of two or three days. We performed geochemical analy-
sis and measured multiple components of aqueous
geochemical concentrations, including Fe(II), sulfate, sul-
fide, acetate, uranium, chloride, and bromide concentrations.
The fluid samples are representative of the groundwater con-
ditions at depths approximately 0.15 m above and below the
discrete sampling locations.

[13] Figure 2 shows the acetate concentrations at bore-
holes D1 (black), D2 (red), D3 (green), and D4 (blue) as a

function of elapsed days after the initial experiment starting
on 8 August 2007. This figure shows that the acetate con-
centrations in borehole D1 in the second experiment period
around Day 400 (i.e., from 31 August 2008 to 17 Novem-
ber 2008) are significantly higher than those in other bore-
holes and during other periods. Since our focus in the
current study is on the identification of redox states under
acetate-based biostimulation, we only work on the data col-
lected in borehole D1 from Days 389 to 483 because both
geochemical and geophysical data are available on the pe-
riod. Figure 3 shows logarithmic acetate, bromide, sulfate,
sulfide, Fe(II), and uranium concentrations as a function of
elapsed time during the period of interest.

2.3. Surface Induced Polarization Data

[14] We collected surface induced polarization data
along the profile near boreholes D1, D2, D3, and D4,
referred to as Array A and shown as the dashed line in
Figure 1. The array consisted of 30 electrodes with 1 m
spacing, leading to a profile length of 29 m. The impedance
measurements were carried out using a dipole-dipole con-
figuration with each dipole skipping three electrodes,
resulting in a dipole length of 4 m for the current and
potential dipoles [Flores Orozco et al., 2011]. The recorded
impedance data were first inverted for complex resistivity
using the least squares based algorithms developed by
Kemna [2000] and Binley and Kemna [2005]. The inverted
results were then converted to complex conductivity and
subsequently used for the current study. The measurement
protocol was used in a previous study, where it was demon-
strated to produce good resolution data for depths to 7 m
[Williams et al., 2009]. In this study, we use five different
frequencies (i.e., 0.25, 0.5, 1, 2, and 4 Hz) to collect IP data
from Day 361 to Day 853 after the beginning of acetate
injection. More methodological details regarding the data
acquisition are presented in Flores Orozco et al. [2011].

[15] Figure 4 shows the real and imaginary conductivity
data collected from borehole D1 for frequencies 0.25 Hz
(black), 0.5 Hz (red), 1 Hz (green), 2 Hz (blue), and 4 Hz
(cyan) as a function of elapsed days. Since the IP data from
different frequencies have similar trends, we use only those
obtained at frequency 0.5 Hz for this study. We expect that
the choice of which frequency to include in the estimation

Figure 1. Schematic plan view of the 2007–2009 biore-
mediation experiments. The solid circles (G51–G60) are
the 10 injection boreholes and the open circles (D01–D12)
are the 12 down-gradient monitoring wells. The open trian-
gles (U01–U03) are the three up-gradient monitoring wells,
and the dashed line is the survey profile of surface induced
polarization used for this study.

Figure 2. Acetate concentrations as a function of days af-
ter the initial experiment. Day 0 of the biostimulation
experiment is 8 August 2007, and the black, red, green, and
blue curves show the data collected from boreholes D1,
D2, D3, and D4, respectively.
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will have a limited effect on the geochemical stage estima-
tion, because as will be subsequently discussed, we use
regression-based models that mainly rely on the trends of
the IP responses (i.e., increasing or decreasing), which are
similar for all frequencies.

3. Hidden Markov Model

[16] We describe development of the hidden Markov
model for estimating the transitions of the underlying geo-
chemical stages during bioremediation based on the main
reaction networks identified from the Rifle IFRC site. We
begin by introducing the main reaction networks and then
describe the data-driven model. The aqueous geochemical
concentrations used for the development include acetate,
bromide, sulfate, sulfide, Fe(II), and uranium concentra-
tions as shown in Figure 3; the geophysical data include

the real and imaginary components of IP data at frequency
0.5 Hz as a function of elapsed time.

3.1. Microbe-Mediated Reaction Networks and
Data-Driven Hidden Markov Model

[17] Although many reactions occur at the Rifle site, the
system responses to acetate-based biostimulation can be
represented using the subset of reactions shown in Figure 5
and provided by Li et al. [2010]:

FeOOHðsÞþ1:925Hþþ0:033NHþ4 þ0:208CH 3COO� !
Fe 2þþ0:033C 5H7O2NðFeRBÞ þ 0:250HCO�3 þ1:600H 2O

ð1Þ
UO2þ

2 þ0:067NHþ4 þ0:417CH 3COO�þ0:8H 2O!
UO 2ðsÞþ0:0667C 5H7O2NðFeRBÞþ0:5HCO�3 þ2:15Hþ

ð2Þ

Figure 3. Logarithmic geochemical data collected from borehole D1: (a) acetate (mM), (b) bromide
(mM), (c) sulfate (mM), (d) sulfide (mM), (e) Fe(II) (mM), and (f) uranium (mM) as a function of the
elapsed time.
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SO2�
4 þ1:082CH 3COO�þ0:052Hþþ0:035NHþ4 !

0:035C 5H7O2NðSRBÞþ0:104H2Oþ2HCO�3 þHS�
ð3Þ

Fe 2þþH 2SðaqÞ ! FeSðamÞ þ 2H þ ð4Þ

[18] Formulas 1 and 2 are the main reactions for iron
reduction. Accompanying the activity of iron reducing bac-
teria (i.e., FeRB), insoluble Fe3þ is reduced to aqueous
Fe2þ and soluble U6þ is reduced to solid phase U4þ. The
third formula is the main reaction of sulfate reduction
accompanying the activity of sulfate reducing bacteria (i.e.,
SRB). The last formula is the precipitation of new metal
mineral induced by metabolic end-products of both FeRB

and SRB; it is believed to be the main cause of geophysical
responses.

[19] At the Rifle IFRC site, several studies [Yabusaki
et al., 2007; Fang et al., 2009; Li et al., 2010] have devel-
oped numerical reactive transport models, with the use of
above main reaction paths and some other geochemical and
geophysical processes, to simulate the field-scale bioreme-
diation processes. Given the spatial distribution of hydro-
geological and geochemical parameters (e.g., permeability
and bioavailable Fe(III)) and under suitable initial and
boundary conditions, those models reproduce the borehole
aqueous groundwater geochemical responses well. The
mechanistic approach is critical for understanding the fun-
damentals of field-scale bioremediation processes. How-
ever, those methods are computationally expensive and
subject to large degree of uncertainty because both model
calibration and associated parameter estimation are com-
plex inverse problems.

[20] In this study, we take a complementary but different
approach to the mechanistic modeling methods. We adopt
a data-driven, statistical approach, which can incorporate
geophysical data and other types of available information.
We develop a statistical model to identify the unknown
geochemical state transitions defined by the main reaction
networks using measured aqueous geochemical and geo-
physical data. The underlying principle for such develop-
ment lies in the fact that each stage of the processes has
unique geochemical characteristics as shown in Formulas
1–4. Rather than utilizing a mechanistic representation of
the reaction networks (see Formulas 1–4), we develop a
new approach based on hidden Markov models for quanti-
fying critical biogeochemical transitions within the com-
plex subsurface system.

[21] Figure 6 illustrates the general structure of the hid-
den Markov model developed for this study, where the
arrows show dependent relationships. In the figure, S1, S2,
S3, . . . , and ST represent state variables taking integers
between 1 and m, where m is the total number of possible
states and T is the total number of time steps for estimation.
For example, value 1 corresponds to iron reduction state
and value 2 corresponds to sulfate reduction state. All those
state variables are unknown and hidden to us. Vectors X1,
X2, X3, . . . , and XT represent aqueous geochemical meas-
urements (e.g., Fe(II), sulfate, sulfide, etc.) and geophysical
data. It is reasonable to assume that the observed data
depend in some ways on their corresponding unknown
states. In the estimation procedure, we can develop link-
ages between X1 and X2, X2 and X3, . . . , and so on if we

Figure 4. Induced polarization data at borehole D1: (a)
real conductivity (mS/m) and (b) imaginary conductivity
(mS/m) at frequencies 0.25 Hz (black), 0.5 Hz (red), 1 Hz
(green), 2 Hz (blue), and 4 Hz (cyan) as a function of
elapsed days.

Figure 5. Main reaction networks associated with the
Rifle uranium biostimulation experiments.

Figure 6. General structure of the developed hidden
Markov model.
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want to account for the temporal dependence of geochemi-
cal and geophysical parameters. The temporal changes of
underlying states form a Markov chain, which is inhomoge-
neous because the state transitions may depend on other
types of information.

3.2. State-Dependent Geophysical and Geochemical
Characteristics

[22] Many models can be used to describe the dependence
of geophysical and geochemical data on the underlying
states and they are typically multivariate. In this study, we
build state-dependent regression models based on geochemi-
cal Formulas 1–4 and the availability of geophysical and
geochemical measurements. For geochemical data, we con-
sider acetate and bromide as exploratory variables since ace-
tate is an injected electron donor for iron and sulfate
reduction (see Formulas 1 and 3) and bromide is a conserva-
tive tracer that is coinjected during the field experiments.
We also consider sulfate as an exploratory variable since it
is reduced to sulfide during sulfate reduction (see Formula
3). We consider Fe2þ, uranium, and sulfide as dependent
variables because Fe2þ and uranium are altered by iron
reduction and sulfide is the product of sulfate reduction. For
IP data, since solid phase FeS is the primary cause of IP
responses [Pelton et al., 1978] and by Formula 4, FeS is
formed from the chemical reaction of Fe2þ and sulfide, we
consider IP data as dependent variables of Fe2þ and sulfide.
Consequently, we have the following regression equations:

Fe2 � �0i þ �1iAcetate þ �2iSulfate þ �3iSulfate � Acetate

þ �4iBromideþ"1i;

ð5Þ

U � �0i þ �1iAcetate þ �2iBromide þ "2i; ð6Þ

Sulfide � �0i þ �1iAcetate þ �2iSulfate þ �3iSulfate � Acetate

þ �4iBromide þ "3i;

ð7Þ

IPreal � u0i þ u1iFe2þ u2iSulfide þ u3iFe2� Sulfide þ "4i:

ð8Þ

IPimag � v0i þ v1iFe2þ v2iSulfide þ v3iFe2� Sulfide þ "5i:

ð9Þ

[23] Symbols �ki, �ki, �ki, uki, and vki are unknown coeffi-
cients of regression equations and "ki represents normally
distributed random errors with unknown standard deviation,
where k¼ 0, 1, 2, 3 or 4 and i represents a state. Terms
‘‘Fe2,’’ ‘‘Acetate,’’ ‘‘Sulfate,’’ ‘‘Bromide,’’ ‘‘U,’’ and ‘‘Sul-
fide’’ represent the logarithmic concentrations of aqueous
Fe2þ, acetate, sulfate, bromide, U6þ, and sulfide, respec-
tively. The terms ‘‘IPreal’’ and ‘‘IPimag’’ represent the real
and imaginary conductivity data collected at frequency
0.5 Hz.

[24] Ideally, the change in acetate concentrations caused
by the reactions should be used in the estimation procedure
rather than the total acetate concentration values invoked in
the above regression equations. However, it is easier to mea-
sure acetate concentrations at wellbores than to measure

their changes. To compensate for the effects of transport on
the acetate concentration, we include bromide concentra-
tions as a variable in equations (5)–(7). The necessity of
using the bromide term will be determined by model selec-
tion procedures, as will be described below. Although the
microbe-mediated reaction shown in Formula 1 does not
include sulfate, we include two terms related to sulfate in
equation (5) as Fe2þ may react with sulfide during iron
reduction (see Formula 4). Again, the necessity of those
terms in the estimation procedure will be determined by
model selection. To take account for possible interactions
between acetate and sulfate, we included their product as a
regression term. In equations (5)–(9), we do not include
Fe3þ and U4þ because both are not commonly assayed
through groundwater-based measurements given their insolu-
ble state.

[25] All the coefficients and standard deviations of resid-
uals in the regression equations are unknown, and they
depend on the status of redox-based transformations. We
estimate those coefficients using parameter estimation and
model selection procedures described below.

3.3. State Evolution and Transition Probability
Models

[26] We use a Markov model to describe the underlying
redox-based state transitions associated with acetate-based
bioremediation at the Rifle site. Since the total number of
states often is more than two, we use a multinomial distri-
bution to describe them. Let �ij represent the transition
probability from the ith state to the jth state. The transition
probability may depend on other types of categorical infor-
mation, such as the injection status of acetate zt at time t,
and it is a conditional probability function given below:

�ij ztð Þ ¼ P Stþ1 ¼ jjSt ¼ i; ztð Þ: ð10Þ

[27] We may divide acetate concentrations into two cate-
gories (i.e., low or high status) or three categories (i.e., low,
medium, or high status). For general, let p be the total num-
ber of the categories. We let variable zt be a vector of size p
with its component being 1 if a particular status (i.e., low-
acetate, medium-acetate, or high-acetate concentrations)
presents and 0 otherwise. Consequently, we can use a mul-
tinomial logistic model [Venables and Ripley, 1999] to
obtain the transition probability as follows

�ij ztð Þ ¼
exp zT

t wj

� �

1þ
X
k 6¼j�

exp zT
t wk

� � ; ð11Þ

where wi and wk are the coefficient vectors of size p that
correspond to the current state St ¼ i and St ¼ k, respec-
tively. The letter T is the transpose of a vector and j� is the
arbitrary baseline redox state. For the baseline category, the
transition probability is given by:

�ij� ztð Þ ¼ 1�
X
k 6¼j�

�ik ztð Þ: ð12Þ

3.4. Likelihood Function and Parameter Estimation

[28] We follow the methods and notations given by
Zucchini and MacDonald [2009] to develop the likelihood
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function for parameter estimation. Let pi xð Þ ¼
Pr Xt ¼ xjSt ¼ ið Þ be the conditional probability of Xt

when the Markov chain is in the state i at time t. The likeli-
hood function is a joint conditional probability distribution
of all the data given all the unknown parameters, which can
be expressed as:

LT ¼ Pr x1; x2; � � � ; xT ja; b; h; u; vð Þ ¼ dP x1ð Þ
YT
t¼2

C ztð ÞP xtð ÞU;

ð13Þ

where U ¼ 1; 1; � � � ; 1ð ÞT , d ¼ �1; �2; � � � ; �mð ÞT , the initial
probability of each unknown state, and P xtð Þ is a diagonal
matrix whose elements are p1 xtð Þ, p2 xtð Þ, . . . , pm xtð Þ. The
symbol C ztð Þ is the transition matrix at time step t, which is
given below:

C ztð Þ ¼

�11 ztð Þ �12 ztð Þ � � � �1m ztð Þ
�21 ztð Þ �22 ztð Þ � � � �2m ztð Þ

� � . .
.

�

�m1 ztð Þ �m2 ztð Þ � � � �mm ztð Þ

0
BBB@

1
CCCA: ð14Þ

[29] We use the Expectation-Maximization algorithm
[Dempster et al., 1977] to estimate unknown parameters by
maximizing the likelihood function given in equation (13).
The algorithm is an iterative method that finds maximum
likelihood estimates of parameters when some of the data are
missing by following two main steps (i.e., the Expectation-
step and Maximization-step). In the Expectation-step, we
compute the conditional expectation of the missing data
given the observations and given the current estimates of pa-
rameters. In the Maximization-step, we maximize, with
respect to parameters, the complete data log likelihood with
the functions of the missing data replaced in it by their condi-
tional expectation. The detailed algorithms for the hidden
Markov model are given in Zucchini and MacDonald
[2009]. For implementation, we use an R package, called
‘‘depmixS4,’’ developed by Visser and Speekenbrink [2010]
for hidden Markov models. Visser [2011] provides a good tu-
torial on several key issues in hidden Markov modeling.

3.5. Model Selection

[30] Since the underlying bioremediation processes are
very complex, we explore a range of models in terms of
state-dependent probability distributions to determine the
best model for estimation. They include (1) different num-
ber of underlying states, (2) different numbers of regression
equations, (3) various combinations of covariates, (4) vari-
ous ways to use geophysical data, and (5) prior distribution
of parameters. We use model selection techniques to select

the model that best represents the processes using minimal
explanatory variables. In this study, we use the Bayesian
information criterion (BIC) model selection technique
developed by Schwarz [1978]:

BIC ¼ �2log Lþ plog T ; ð15Þ

where log L is the log likelihood of the fitted model, p is
the total number of unknown parameters in the model, and
T is the total number of observations. The BIC often favors
the models with fewer parameters than does the popular
Akaike information criterion (AIC) [Zucchini and Mac-
Donald, 2009].

4. Estimation Results

4.1. Parameter Estimation and Model Selection

[31] Based on what we consider to be the ‘‘full’’ model
representations given by equations (5)–(9), we explore a
variety of submodels based on assumptions about which
data are available for the estimation algorithm. To be con-
cise, we only describe the results of following five cases:
(1) use of geochemical data only, (2) use of geochemical
and real conductivity data, (3) use of geochemical and
imaginary conductivity data, (4) use of geochemical and
real and imaginary conductivity data (i.e., ‘‘full model’’),
and (5) use of geochemical data (excluding bromide) and
imaginary conductivity data. For each combination of the
model setup, we use the expectation-maximization algo-
rithm to estimate parameters and calculate log likelihood
and their corresponding BIC values.

[32] A summary of the model selection results is given
in Table 1. The total number of unknown parameters show-
ing in Column 2 is calculated based on three states. The log
likelihoods shown in the last column generally decrease
with the decreasing of the number of unknown parameters
because a model with more parameters typically fits data
better for the same model setting. However, the Bayesian
information criterion (BIC) does not always increase with
the decreasing total number of unknown parameters since it
is punished by the total number of unknowns.

[33] The smallest BIC should give us the best model for
the given data under the model family that we specify.
Under this criteria, the best model is the one that uses geo-
chemical data plus imaginary conductivity because it gives
the BIC value of 35.61, which is significantly smaller than
the BIC value of using geochemical data only
(BIC¼ 94.63), using both geochemical and real conductiv-
ity data (BIC¼ 113.89), or using geochemical data plus
both real and imaginary conductivity data (BIC¼ 110.31).
This means that the field imaginary conductivity data

Table 1. A Summary of Model Selection Results Using the Bayesian Information Criterion

Cases
Total Number
of Unknowns

Bayesian Information
Criterion (BIC) Log Likelihood

Case 1: Geochemical data only (equations (5)–(7)) 56 94.63 61.08
Case 2: Geochemical and IP real conductivity data (equations (5)–(8)) 71 113.89 80.48
Case 3: Geochemical and IP imaginary conductivity data (equations (5)–(7), (9)) 71 35.61 119.62
Case 4: Geochemical and IP real and imaginary conductivity data (equations (5)–(9)) 86 110.31 111.31
Case 5: Geochemical (excluding bromide) and IP imaginary conductivity data

(equations (5)–(7), (9), excluding bromide terms)
62 102.96 68.53
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provide significant information about the underlying redox
states. To explore the necessity of including bromide as an
exploratory variable, we exclude all the bromide terms
from the best model. This leads to the BIC value of 102.96,
which is significantly larger than that of the best model.

4.2. Interpretation of the Identified Underlying State
Transformations

[34] The approach allows us to estimate the coefficients
of equations (5)–(9), thereby developing the relationships
between geochemical and geophysical parameters for criti-
cal redox-based states. Table 2 summarizes the results of
the estimation procedure. We interpret the results based on
the relative magnitudes of coefficients and not the signs of
the coefficients because each component is related to multi-
ple reaction pathways and potentially multiple physical
processes (e.g., sorption and desorption).

[35] From Table 2, we can see that at each of the identi-
fied states, all the reactions given in Formulas 1–4 have
occurred. This means no pure iron reduction or sulfate
reduction phase exists under the field conditions, unlike in
the laboratory column experiments. However, at different
states, there are different dominant reactions, which allow
us to distinguish between critical states. For example, from
Table 2, we can see the regression equation (i.e., equation
(9)) of imaginary conductivity versus Fe2 and sulfide for
state 3 is very different from that in states 1 and 2. For state
3, the IP responses are strongly related to Fe2, sulfide, and
their product. This is because Fe2 and sulfide together form
solid phase FeS, which in turn affects the IP response. For
states 1 and 2, the IP responses are weakly related to Fe2,
sulfide, and their product. We also examine the regression
equation of sulfide versus acetate and sulfate because this is
one of the main features of sulfate reduction. As shown in
Table 2, the sulfide in state 1 is more closely related to sul-
fate and acetate compared to state 2. On the other hand,
uranium in state 2 is more closely related to acetate concen-
tration than that in state 1. Considering the various reaction
pathways, we call states 1, 2, and 3 sulfate reduction
‘‘dominated,’’ iron reduction ‘‘dominated,’’ and recovery
states, respectively; we refer them to as ‘‘SRB,’’ ‘‘IRB,’’
and ‘‘REC’’ for convenience.

[36] Figure 7 compares the identified three states with
corresponding geochemical and geophysical data. This fig-
ure shows that when both acetate and sulfide concentrations
are high, Fe2 concentrations are very low. This is possibly
because the abundance of sulfide produced by sulfate
reduction converts Fe2 to FeS. In the recovery phase, ace-
tate decreases and both sulfate and Fe2 rebound.

[37] We can extract transition probabilities among the
three identified states from the estimated best model, which
can provide information about field-scale bioremediation
processes. The following is the transition probability matrix
obtained from the best model.

0:500 0:500 0:000
0:187 0:750 0:063
0:000 0:000 1:000

0
@

1
A ð16Þ

[38] In the above matrix, the first, second, and third rows
and columns correspond to the states of sulfate reduction
(SRB), iron reduction (IRB), and the recovery state (REC),
respectively. From the matrix, we can see that there are
strong transitions between the states of sulfate-dominated
and iron-dominated reduction.

4.3. State-Dependent Relationships Among Fe(II),
Uranium, and Acetate

[39] We examine correlations among Fe(II), uranium
(U6þ), and acetate concentrations as they are closely related
to iron reduction as shown in Figure 5 and Formulas 1 and 2.
Figure 8 shows the crossplots of Fe(II), uranium, and acetate
concentrations as a function of underlying states; their corre-
lation coefficients are given in Table 3. As given in the last
row of Table 3, the overall correlations among those geo-
chemical concentrations are low (i.e., less than or around
0.5). For example, the correlation coefficients of Fe(II) and
uranium with acetate are �0.4766 and 0.4112, and the corre-
lation coefficient between Fe(II) and uranium is �0.5299.
However, with the identification of underlying states, we can
get much better correlations among those parameters.

[40] For the iron reduction dominated state (see the
crosses in Figure 8 and the third row in Table 3), we can

Table 2. Interpretation of the Estimated States Based on the Relative Magnitudes of Coefficients in the Regression Equations (Exclud-
ing Constant Terms)

States Fitted Models

State-1 (sulfate reduction dominated state,
referred to as ‘‘SRB’’)

Fe2 � �0.591 � Acetateþ 1.233 � Sulfateþ 1.512 � Acetate � Sulfate� 1.377 � Bromide
(sd¼ 0.036)

U � �1.287 � Acetateþ 0.036 � Bromide (sd¼ 0.416)
Sulfide � 1.671 � Acetate� 1.384 � Sulfate� 3.660 � Acetate � Sulfateþ 0.297 � Bromide

(sd¼ 0.302)
IPimag � 0.626 � Fe2� 0.565 � Sulfideþ 0.460 � Fe2 � Sulfide (sd¼ 0.260)

State-2 (iron reduction dominated state,
referred to as ‘‘IRB’’)

Fe2 � 2.211 � Acetateþ 7.893 � Sulfateþ 4.731 � Acetate � Sulfate� 5.401 � Bromide (sd¼ 0.312)
U � �3.810 � Acetateþ 2.662 � Bromide (sd¼ 0.318)
Sulfide � 3.779 � Acetate� 0.049 � Sulfate� 2.157 � Acetate � Sulfate� 0.225 � Bromide

(sd¼ 0.407)
IPimag � �0.100 � Fe2þ 0.500 � Sulfideþ 0.281 � Fe2 � Sulfide (sd¼ 0.093)

State-3 (recovery state, referred to
as ‘‘REC’’)

Fe2 � 0.303 � Acetate� 0.934 � Sulfate� 1.487 � Acetate � Sulfateþ 0.336 � Bromide (sd¼ 0.045)
U � �0.318 � Acetateþ 0.447 � Bromide (sd¼ 0.067)
Sulfide � �2.309 � Acetate� 0.764 � Sulfateþ 1.900 � Acetate � Sulfateþ 1.212 � Bromide

(sd¼ 0.069)
IPimag � 4.099 � Fe2þ 2.331 � Sulfide� 2.352 � Fe2 � Sulfide (sd¼ 0.074)
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see that (1) Fe(II) concentrations generally increase with
increasing acetate concentrations (Corr¼ 0.4568), (2) ura-
nium concentrations decrease with increasing acetate con-
centrations (Corr¼�0.8649), and (3) Fe(II) and uranium
concentrations are negatively correlated (Corr¼�0.5958).
Those results are consistent with reaction Formulas 1–2
because Fe(II) is the product of the reduction of bioavail-
able Fe3þ, and aqueous U6þ is transformed to insoluble
U4þ accompanying the iron reduction.

[41] For the sulfate reduction dominated state (see the
circles in Figure 8 and the second row in Table 3), we can
see that uranium varies over a large range (see Figure 8c).
The high negative correlation (Corr¼�0.9015) between
uranium and acetate concentrations (see Figure 8b) means
that the decreasing of acetate corresponds to the increasing
of uranium. For the recovery state (see the triangles and the
fourth row in Table 3), Fe(II) concentrations are observed
to increase with decreasing of acetate concentrations (see
the triangles in Figure 8a, and Corr¼�0.9580), opposite to
the iron reduction dominated state (see the crosses in

Figure 8a). This is because at this state no iron reduction
occurs and the consuming of acetate will produce more sul-
fides that transform Fe(II) to FeS.

4.4. State-Dependent Relationships Among Sulfate,
Sulfide, and Acetate

[42] Next, we examine correlations among sulfate, sul-
fide, and acetate concentrations because they are closely
related to sulfate reduction as shown in Figure 5 and For-
mula 3. Figure 9 shows the crossplots of sulfate, sulfide,
and acetate concentrations as a function of underlying
states; their detailed correlation coefficients are given in
Table 4. From the last row of Table 4, we can see that sul-
fate and acetate concentrations have a very strong negative
correlation (Corr¼�0.8687), but the overall correlations
of acetate and sulfate with sulfide are low (i.e., 0.3426 and
�0.2241, respectively).

[43] For the sulfate reduction dominated state (see the
circles in Figure 9 and the second row in Table 4), sulfate
is negatively correlated to acetate (Corr¼�0.9134) and

Figure 7. Comparison of estimated states and their corresponding geochemical and geophysical data.
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sulfide is positively correlated to acetate (Corr¼ 0.8845) as
sulfate reduction consumes both sulfate and acetate to pro-
duce sulfide (Formula 3). We also found that sulfide has a
strong negative correlation with sulfate (Corr¼�0.7745),
as expected stoichiometrically.

[44] We see similar patterns for the iron reduction domi-
nated state (see the crosses in Figure 9 and the third row in
Table 4) and for the recovery state (see the triangles and
the fourth row in Table 4). This is because under the field
conditions, we cannot clearly separate each state, and sul-
fate reduction (albeit at low levels) may occur in both iron
reduction dominated [Druhan et al., 2012] and recovery
states as shown in Table 2.

4.5. State-Dependent Relationships Between
Imaginary Conductivity and Fe(II) and Sulfide

[45] We examine relationships among imaginary conduc-
tivity and Fe(II) and sulfide concentrations because Fe(II)
and sulfide together can form FeS (see Formula 4) that in
turn affects the IP response. Figure 10 shows the crossplots
of imaginary conductivity, Fe(II), and sulfide concentrations
as a function of underlying states; their correlation coeffi-
cients are given in Table 5. The overall correlations among

imaginary conductivity, Fe(II), and sulfide are quite low
(Corr (IPimag, Fe(II))¼ 0.4798, Corr (IPimag, sulfide)
¼�0.1951, and Corr (Fe(II), sulfide)¼ 0.0214).

[46] For the recovery state, Figure 10a shows the IP
responses increase with increasing of Fe(II)
(Corr¼ 0.8742). This is likely because the Fe(II) recovery
happens to have the same trend as the iron precipitation
(FeS). Figure 10b shows the IP responses increase with
decreasing sulfide concentrations. This suggests that the
reaction given in Formula 4 is primarily controlled by the
availability of sulfide given the abundance of Fe(II) (see
Figure 7a) and FeS precipitation increases with the con-
suming of sulfide. From Figure 10c, we can see that to have
large IP responses, we need relatively high concentrations
of both Fe(II) and sulfide. From this figure, we can see for
some iron reduction dominated states (see the crosses on
the top right corner), both Fe(II) and sulfide concentrations
are high. Those possibly lead to the precipitation of FeS
(see Figure 7d around Day 400) in a short period, but the
persistent IP responses need accumulation of FeS over a
certain time period. For the both iron and sulfate reduction
dominated states (crosses and circles), as shown in Figure
10, the IP responses are very low.

Table 3. State-Dependent Pairwise Correlations of Fe(II),
Uranium, and Acetate Concentrations

Corr (Fe(II),
Acetate)

Corr (Uranium,
Acetate)

Corr (Fe(II),
Uranium)

Sulfate reduction
dominated state

�0.1624 �0.9015 �0.0079

Iron reduction
dominated state

0.4568 �0.8649 �0.5958

Recovery state �0.9580 0.7785 �0.8936
All states �0.4766 0.4112 �0.5299

Figure 8. Crossplots of Fe(II), uranium, and acetate con-
centrations as a function of estimated states, where the
crosses, circles, and triangles represent the iron reduction,
sulfate reduction, and recovery states, respectively.

Figure 9. Crossplots of acetate, sulfate, and sulfide con-
centrations as a function of estimated states, where the
crosses, circles, and triangles represent the iron reduction,
sulfate reduction, and recovery states, respectively.

Table 4. State-Dependent Pairwise Correlations of Sulfide,
Sulfate, and Acetate Concentrations

Corr (Sulfate,
Acetate)

Corr (Sulfide,
Acetate)

Corr (Sulfate,
Sulfide)

Sulfate reduction
dominated state

�0.9134 0.8845 �0.7745

Iron reduction
dominated state

�0.8567 0.9027 �0.7617

Recovery state �0.9338 0.8525 �0.7134
All states �0.8687 0.3426 �0.2241
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5. Discussion and Conclusions

[47] We adopted a data-driven approach in this study to
classify the field-scale biogeochemical transitions by using
the time-lapse borehole aqueous geochemical measure-
ments and surface IP data under several assumptions. First,
we made a key assumption that the aqueous geochemical
concentrations are mediated by microbial reactions and not
from the flow and reactive transport. In reality, the meas-
ured concentrations are influenced by both transport and
local reactions. Since all the geochemical components used
in the state-dependent equations are local and contempora-
neous and we include bromide concentrations as covariates
in the regression equations, we think this assumption is rea-
sonable. Second, the estimated results are subject to uncer-
tainty because of the model setup and the method for
finding solutions. For example, we consider only four rela-
tionships in the state-dependent equations, and we may
need to add more equations to account for more processes
in the bioremediation processes. In the current model, we
ignore the temporal correlation of geochemical parameters
themselves and assume that all the temporal dependence
comes from the hidden states. Direct incorporation of the
temporal correlation may change the detailed results to

some degrees, but the main conclusions are expected to be
same.

[48] Mechanistic approaches (i.e., both reactive transport
and geophysical models) can be very helpful for improving
the results of the current studies. For instance, reactive
transport modeling can take account of a wide range of
chemical reactions besides the main pathways in Formulas
1–4 and the spatial heterogeneity of physical, geochemical,
and microbial parameters [Li et al., 2010]. Such simulation
will pose constraints on multiple geochemical parameters
that we use for estimating underlying redox states. Simi-
larly, mechanistic petrophysical models, such as electro-
chemical models for disseminated sulfide ores [Wong,
1979] and mechanistic models for shaly sands [Revil,
2012], could be incorporated to link IP responses directly
to electrolytes and their activities. Development and incor-
poration of mechanistic petrophysical models, which may
reduce uncertainty or ambiguity between IP responses and
geochemical parameters, warrants further investigation.

[49] Our results from the Rifle field data sets are gener-
ally consistent with those found from previous laboratory
column experiments based on samples collected at the
same site [Williams et al., 2009], but some differences
exist. Under complex field conditions, the transition
between iron and sulfate reduction states is not as clear cut
as it is in the laboratory experiments. At the field scale,
iron reduction and sulfate reduction appears to occur con-
currently, which is in agreement with Williams et al.
[2011]; their relative dominance depends on the local
availability of acetate, sulfate, bioavailable Fe3þ, and so
on. Consequently, we refer to the identified states to as (1)
the sulfate reduction dominated state, (2) the iron reduction
dominated state, and (3) the recovery state.

[50] At borehole D1, we identify that the sulfate reduc-
tion dominated state occurs first, followed by the iron
reduction dominated state for the selected time period from
Day 390 to Day 480. This is different from laboratory col-
umn experiments using fresh Rifle sediments (i.e., previ-
ously unstimulated by acetate) [Williams et al., 2005],
where iron reduction starts first followed by sulfate reduc-
tion. But it is in general agreement with the field observa-
tions of Druhan et al. [2012] who documented the early
onset of sulfate reduction in the same experimental plot
presented here, where previously stimulated sediments (in
2007) are predisposed toward sulfate reduction and rapid
onset following secondary stimulation in the same plot.
Another possible reason for the sequence is that iron reduc-
tion occurs before Day 390 as we can see from Figure 2
during the earliest period of acetate injection (noting that
acetate injection and arrival of acetate at D1 proceeded day
390).

[51] We examine cross correlations among various geo-
chemical data and their association with IP responses.
Although overall pairwise correlations among different
geochemical data are low (i.e., less than or around 0.5,
excluding sulfate versus acetate), the new approach yields
greatly improved state-dependent correlations (greater than
0.6) for those pairs that are mechanistically connected. Par-
ticularly, the pairwise correlations of Fe(II) and sulfide
with IP imaginary conductivity for the recovery state have
been significantly improved (from less than 0.5 to more
than 0.87).

Figure 10. Crossplots of Fe(II) and sulfide concentrations
and IP imaginary conductivity data as a function of esti-
mated states, where the crosses, circles, and triangles repre-
sent the iron reduction, sulfate reduction, and recovery
states, respectively.

Table 5. State-Dependent Pairwise Correlations of IP Imaginary
Conductivity and Fe(II), and Sulfide Concentrations

Corr (IPimag,
Fe(II))

Corr (IPimag,
Sulfide)

Corr (Fe(II),
Sulfide)

Sulfate reduction
dominated state

0.2237 �0.2620 �0.3251

Iron reduction
dominated state

�0.0197 0.2899 0.4614

Recovery state 0.8742 �0.9720 �0.9299
All states 0.4798 �0.1951 0.0214
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[52] The identified state-dependent relations provide
strong field-scale evidence to support the IP mechanisms
associated with bioremediation found by many previous
laboratory column experiments. For example, Williams
et al. [2005] and Ntarlagiannis et al. [2005] using Rifle
sediments showed that the IP anomalies are caused by
microbe-induced metal sulfide precipitation (FeS and ZnS)
because they change the electrical charge transport through
the sediments by encouraging a flow of dissolved ions to
and from the metal-electrolyte interface, which causes an
excess or deficit of inactive ions to accumulate there
[Wong, 1979]. Slater et al. [2007] and Personna et al.
[2008] further showed through lab experiments that the IP
responses associated with bioremediation of Rifle sedi-
ments likely result from the formation of FeS biofilms on
the mineral surface of pores in the sand matrix, not the bio-
minerals encrusted bacterial cells themselves, and that the
IP signatures were fully reversible under anaerobic and aer-
obic conditions due to the ephemeral nature of the biopreci-
pitates. The strong correlations of imaginary conductivity
with Fe(II) (Corr¼ 0.87) and with sulfide (Corr¼�0.97)
in the recovery stage, and the need to maintain relatively
high concentrations for both Fe(II) and sulfide (see Figure
10c) suggest that the above-mentioned IP mechanisms
found from laboratory experiments likely also contribute to
the observed field scale IP responses.

[53] In addition, column-scale laboratory studies also
demonstrated the microbially mediated IP responses could
be reduced because of other concurrent processes, such as
the formation of biofilm polymers [Williams et al., 2005],
the decrease of total surface areas due to coagulation of
individual biominerals [Slater et al., 2007; Chen et al.,
2009], and the precipitation of calcite [Wu et al., 2009].
Our results (see Figure 10c) show that the IP response is
small at the sulfate reduction stage, where both Fe(II) and
sulfide have high concentrations. As suggested by Flores
Orozco et al. [2011], among many possible reasons, the
concurrent formation of calcite during acetate injection [Li
et al., 2010] may depress the IP response during that stage.
Compared to the column experiments that were performed
to investigate IP mechanisms at the Rifle site, the goal of
this study is to identify the states and transitions that most
influence the IP response. It is not our intent to identify the
associated mechanisms at each stage that lead to the effec-
tive IP response, and indeed the strength of our method is
that it provides information about the system transitions
without requiring such knowledge. However, interpreta-
tions based on our data-driven approach are well aligned
with previous laboratory study findings.

[54] The developed method provides a wide range of
quantitative information for understanding in situ reaction
pathways and thus the complex processes associated with
bioremediation. We have obtained dynamic relationships
among various geochemical concentrations as a function of
the underlying redox states, geochemical and geophysical
features as a function of the underlying state, and the
sequences of state transitions under the field condition.
Those results may be used to constrain field-scale reactive
transport modeling, for example, by providing lower and
upper bounds or best estimated values for some parameters,
and determining which pathways dominate under local
environments.

[55] Although we estimated the state transitions as a
function of time at only one borehole location in this study,
the method can be extended to incorporate 2-D IP profile
information and multiple wellbore data sets. For the Rifle
site, such extension would require consideration of the
sequences of the transition states along each of the four
boreholes and use of a hierarchical Bayesian model similar
to the one by Chen et al. [2012] to estimate the spatiotem-
poral distribution of underlying states by conditioning to
data at boreholes and geophysical data along the profile.
Such an extension is currently in progress and is expected
to lead to valuable information to constrain or compare
with reactive transport simulations, and to generally under-
stand remediation-induced processes over field relevant
space and time scales.

[56] Testing of our developed methodology at the Rifle
site suggests that individual geochemical or geophysical
measurements alone could not provide sufficient informa-
tion on the field-scale bioremediation processes. This
means individual geochemical or geophysical data are not
solely sufficient as diagnostic indicators of field-scale bio-
remediation-based transitions at the Rifle IFRC site. How-
ever, the identified redox states, which is obtainable using
geochemical and geophysical time-lapse data sets, take
account of multiple reaction pathways and thus serve as an
integrated signature that is diagnostic of field-scale sys-
tems-level transitions and feedbacks. The developed data-
driven methodology offers a unique avenue for incorporat-
ing diverse data sets to improve our predictive understand-
ing of complex, dynamic subsurface systems.
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